Deconer: An easy-to-use and comprehensive evaluation toolkit for cell type deconvolution from expression data

Wei Zhang

2023-07-17

Cell type proportion is related with certain phenotype or disease (Wei, et al.). Therefore, quantifying cell or tissue proportions is an important problem in bioinformatics.

Here, we proposed a cell type deconvolution evaluating toolkit named ‘Deconer’ to perform comprehensive and systematic analysis for different algorithms.

Deconer consists of 6 main part functions as below.

  • Pseudo bulk data generation (including bulk and single cell).
  • Stability analysis under different types of noise.
  • Rare component analysis.
  • Unknown component analysis.
  • Comprehensive evaluation metrics.
  • Well characterized datasets for deconvolution utilities.

For more information, please see Deconer github page.

library(Deconer)

sessionInfo()
#> R version 4.2.2 (2022-10-31 ucrt)
#> Platform: x86_64-w64-mingw32/x64 (64-bit)
#> Running under: Windows 10 x64 (build 22621)
#> 
#> Matrix products: default
#> 
#> locale:
#> [1] LC_COLLATE=C                               
#> [2] LC_CTYPE=Chinese (Simplified)_China.utf8   
#> [3] LC_MONETARY=Chinese (Simplified)_China.utf8
#> [4] LC_NUMERIC=C                               
#> [5] LC_TIME=Chinese (Simplified)_China.utf8    
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] Deconer_1.0.3
#> 
#> loaded via a namespace (and not attached):
#>  [1] sass_0.4.5        pkgload_1.3.2.1   tidyr_1.3.0       jsonlite_1.8.7   
#>  [5] prettydoc_0.4.1   carData_3.0-5     R.utils_2.12.2    bslib_0.4.2      
#>  [9] shiny_1.7.4       yaml_2.3.7        progress_1.2.2    remotes_2.4.2    
#> [13] sessioninfo_1.2.2 pillar_1.9.0      backports_1.4.1   lattice_0.21-8   
#> [17] glue_1.6.2        digest_0.6.31     promises_1.2.0.1  ggsignif_0.6.4   
#> [21] colorspace_2.1-0  htmltools_0.5.5   httpuv_1.6.9      Matrix_1.6-0     
#> [25] R.oo_1.25.0       plyr_1.8.8        pkgconfig_2.0.3   devtools_2.4.5   
#> [29] broom_1.0.5       purrr_1.0.1       xtable_1.8-4      scales_1.2.1     
#> [33] processx_3.8.1    later_1.3.0       tibble_3.2.1      generics_0.1.3   
#> [37] car_3.1-2         ggplot2_3.4.2     usethis_2.1.6     ellipsis_0.3.2   
#> [41] ggpubr_0.6.0      cachem_1.0.7      withr_2.5.0       cli_3.6.1        
#> [45] magrittr_2.0.3    crayon_1.5.2      mime_0.12         evaluate_0.21    
#> [49] memoise_2.0.1     ps_1.7.5          R.methodsS3_1.8.2 fs_1.6.2         
#> [53] fansi_1.0.4       rstatix_0.7.2     forcats_1.0.0     xml2_1.3.3       
#> [57] pkgbuild_1.4.0    profvis_0.3.7     tools_4.2.2       data.table_1.14.8
#> [61] prettyunits_1.1.1 hms_1.1.3         lifecycle_1.0.3   stringr_1.5.0    
#> [65] munsell_0.5.0     callr_3.7.3       jquerylib_0.1.4   compiler_4.2.2   
#> [69] rlang_1.1.0       grid_4.2.2        rstudioapi_0.14   htmlwidgets_1.6.2
#> [73] miniUI_0.1.1.1    rmarkdown_2.21    gtable_0.3.3      abind_1.4-5      
#> [77] roxygen2_7.2.3    reshape2_1.4.4    Metrics_0.1.4     R6_2.5.1         
#> [81] knitr_1.42        dplyr_1.1.2       fastmap_1.1.1     utf8_1.2.3       
#> [85] rprojroot_2.0.3   desc_1.4.2        stringi_1.7.12    Rcpp_1.0.10      
#> [89] vctrs_0.6.2       tidyselect_1.2.0  xfun_0.39         urlchecker_1.0.1